

SYLLABUS:

Date / Revision23 May 2015 / 02 May 2017 / PPFacultyLife Sciences (LS)Study ProgramsFood Technology, Chemical Engineering

SUBJECT: Physical Chemistry

1 Basic Information

1.01	Subject Name	Physical Chemistry
1.02	Semester	3
1.03	Level	1
1.04	SKS	3
1.05	Mandatory / Curriculum	D-02
1.06	Subject Code	РНСН
1.07	Subject Code	CHE-FTE-D-LS-117
1.08	Year	2017 (7)
1.09	Quality Control	Final Test, OFSE, see evaluation
1.10	Limitations	Min 12 and Max 32 students in one class
1.11	Combined with	Food Technology, Chemical Engineering
1.12	Pre-requisite	Chemistry, Physics, Engineering Math, Fluid & Particle Mechanics, Mass and Energy Balance, Heat and Mass Transfer
1.13	Responsible	Dr. Tutun Nugraha
1.14	Revision	15-05-2017/pp

2 Description of Subject

DAAD

This course provides more insight into chemistry following the basic chemistry courses that the students have learned in the previous year. The course focuses on the topics of thermodynamics and kinetics, the concept of ideal gas, and the 0th, 1st, 2nd, and 3rd law of thermodynamics. Students will also learn to utilize tables of enthalpy, entropy, as well as Cp and Gibbs energy. On the kinetics side, the students will learn the basic concept of kinetics in both gas phase and liquid phase starting with the more theoretical material and continued with the derivation of rate equation from elementary reactions that forms the mechanisms of reaction. The students would also get the opportunity to use their mathematical skills particularly in the use of Calculus, which is used substantially throughout the course.

Federal Ministry of Education and Research Coordinator COOR TECHNISCHE UNIVERSITÄT ILMENAU

1/5

PO Box 150, BSD CPA 15330 Tel. +62 85212318000 info@iuli.ac.id www.iuli.ac.id QT 0.07/Rev.05 IULI – Eco Campus, The Breeze JI. BSD Grand Boulevard BSD City 15345 Island of Java

3 **Objectives**

This course will introduce to the students the next level of fundamental courses within the study program of Food Technoogy and Chemical Engineering. The concept of Chemistry, physics and the use of calculus is emphasized throughout. The course will prepare the students to tackle the more complex phenomena in physical chemistry.

ļ	Compe	ompetency		
	After having the course, students are expected to:			
	a)	Understand the the underlying physical principles that govern the properties and behaviour of chemical systems.		
	b)	Use critical thinking and logic in the solution of problems		
	c)	knwo the applications of calculus into various problems that are faced in this course. The uses of Calculus ie. integral and differenctial are inseparable. This will provide the opportunities for the students to begin to link various concepts in basic mathematics into the realm of physics and chemistry. Integration of basic knowledge beins in this course.		
	d)	students will be introduced to new concepts and to some were given the chances to study in depth various phenomena in thermodynamics, chemical equilibrium as well as kinetics in the gas phase and in theliquid phase.		

5 Learning Approach / Methodology

DAAD

緣

- Lectures/ Class contact (time-tabled) supplemented with interactive questions and answers to build the • projects;
- Tutorial/Laboratory/Practice Classes: preview of materials, revision and/or reports writing; •
- Student Study Effort: homework/assignment; preparation for test/quizzes/ examination.
- Writing assignments/preseantations

6 **Evaluation**

5.1	Absence maximum	25%
5.2	Participation in Discussion	-
5.3	Homework / Classwork	20 points
5.4	Presentation /Simulation	-
5.5	Daily Quiz	20 Points
5.6	Final Examination	60 Points
	Total	100 Points

1	Main Text Book:	
	a)	Physical Chemistry, Ira N Levine, McGraw Hill, 6th Edition, ISBN 978-007-127636-8, 2009 , Estimated Price of book: Rp 305,000,- Also:
	b)	R. J. Silbey, R. A. Alberty, M.G. Bawendi, Physical Chemistry, Edisi ke-4, John Wiley & Sons, Inc. 2005.
2	Suppler	nent Textbooks:

8 **Content / Topics of Lecture**

Week	Content/ Topics of Lecturing	Text Book Chapter	Remark
	 To provide an overview to the students concerning the course as well as the general requirement and the marking scheme To introduce the properties of matter at equilibrium (T, P, V, n, system boundary, and degree of freedom) To discuss the 0th law of thermodynamics, and how it leads to the ideal gas temperature scale To introduce the critical phenomena To introduce the concept of ideal gas and ideal gas mixture including the Dalton's law as applied to partial pressure Followed by the discussion of Equation of States for real gases, including van der Waals and Virial EoS which will allow students to evaluate relationships between P, V, T, and n for real 	Lecture, Group discusion, tutorial for exercise Chapter 1 & 2 (law of thermodynamics) Chapter 8 on ideal and real gas)	
	 gases Exercises/review of problem set 		
3, 4	 First law of thermodynamics To introduce processes that take a chemical system from one state to another is described 	Lecture, Group discusion, tutorial for exercise Chapter 1 & 2	2 x 3 x 50 minutes

DAAD

5,6	 2nd and 3rd law of thermodynamics Students learned the concept of Entropy (S) and how it is related to the natural/ spontaneous direction of a process or a chemical 	discusion, tutorial	2 x 3 x 50 minutes
	reaction	Chapter 3	
	• The 2nd law is discussed as related to the determination		
	whether a process will occur in the forward or the backward		
	direction through evaluation of DS		
	Calculation of entropy at any desired temperature relative to its		
	entropy at zero Kelvin through integration of dq_{rev}/T is discussed		
	• To introduce to student the 3rd law of thermodynamics		
	Heat engine and its efficiency is introduced		
7	Fundamental equations of thermodynamics	Lecture, Group	3 x 50
	To introduce the Gibbs and Helmholtz	discusion, tutorial for exercise	minutes
	 Energy to determine spontaneity of a process To discuss the effects of T and P on Gibbs energy 	Chapter 4 & 5	
	 To introduce the concept of fugacity & activity as well as how 		
	they are related to the calculation Gibss energy for real gases		
	 Exercises/review of problem set 		
	Midterm Break		
8			
9, 10	Chemical Equilibrium	, ,	2 x 3 x 50
5, 10	• To introduce the concept of chemical equilibrium and derive	discusion, tutorial	minutes
	mathematical equations that describe it	for exercise	
	• To discuss the evaluation of equilibrium constant through the	Chapter 6	
	values of Gibbs energy		
	• The effects of the values of T, P, and the concentrations of the initial compositions as well as the presence of inert compounds		
	are described Students will also learn the concept of		
	heterogeneous reactions where solid phase are involved in the		
	chemical reactions		
11	Phase equilibrium	Lecture, Group	3 x 50
11	• To introduce the Gibbs and Helmholtz Energy to determine	discusion, tutorial	minutes
	spontaneity of a process	for exercise	
	• To discuss the effects of T and P on Gibbs energy	Chapter 12	
	• To introduce the concept of fugacity & activity as well as how		
	 they are related to the calculation Gibss energy for real gases Exercises/review of problem set 		
12	Electrochemical Equilibrium	· ·	3 x 50
	To introduce the concept of chemical aquilibrium and derive methometrical	discusion, tutorial for exercise	minutes
	equilibrium and derive mathematical equations that describe it	Chapter 13	
	 To discuss the evaluation of equilibrium 		
	constant through the values of Gibbs		
	energy		
	• The effects of the values of T, P, and		
	the concentrations of the initial		
	compositions as well as the presence of		
	inert compounds are described		
	Students will also learn the concept of		
	heterogeneous reactions where solid		
	phase are involved in the chemical reactions		

*

DAAD

4/5 Coordinator Ch: TECHNISCHE UNIVERSITÄT ILMENAU

13	Reaction Kinetics in the gas phase	Lecture, Group 3 x 50
10	 Introduction to kinetic theory of gases 	discusion, tutorial minutes
	Rate and order of reaction	for exercise
	Reversible first order reactions	Chapter 14 & 15
	Consecutive first order reactions	
	Effects of temperature	
	Mechanisms of chemical reactions	
	 relations between rate constants for forward and backward reactions 	
	• Unimolecular, bimolecular and trimolecular reactions	
	\Unbranched and branched chain reactions	
14	Reaction Kinetics in the liquid phase	Lecture, Group 3 x 50
14	 Mobility of an ion 	discusion, tutorial minutes
	 Encounter pairs and solvent cage 	for exercise
	Diffusion controlled reactions in liquids	Chapter 16
	Acid and Base catalysis	
	Enzyme catalyses	
	Exercises/review of problem set	
15	Review/evaluation/quizes	
16, 17	FinalExamination	

www.tuv.com ID 9105083667

TÜVRheinla CERTIFIED DAAD

QT 0.07/Rev.05 Jl. BSD Grand Boulevard BSD City 15345 Island of Java